
Operating System Virtualization for Ubiquitous
Computing

Vikram S. Vairagade Prof.Chanchal V. Dahat Anjali V. Bhatkar

 Department of CSE, NIT Department of ETC, NIT Department of IT, TGPCET
 Nagpur University , INDIA Nagpur University, INDIA Nagpur University, INDIA

Abstract-The basic concept of virtualization is to provide the
benefits of the services and components irrespective of its
physical presence. Operating System (OS) virtualization
describes the abstraction of an operating system from any
underlying hardware architecture. OS virtualization is needed
as it provides feature of transparent migration of applications.
Ubiquitous computing is an advanced computing concept where
computing is made to appear everywhere and anywhere. The
infrastructure of ubiquitous computing which exploits
virtualization to make computing. In order to enable ubiquitous
environment and servers to be shared the application of various
operating systems with the desktop of user. Using the ubiquitous
environment, the applications could be run in the host system
without installation. The key concept of the system it to operate
the desktop of user by any handy device (like smart phones or
tablet) through web browser irrespective of the location of user.

Keywords: Ubiquitous Computing, OS Virtualization, Virtual
machine, trusted computing, cloud computing.

1. INTRODUCTION:
The current scenario in computer science is considerably
shifting towards cloud -based services. The abstraction of the
maintenance issues from the device has been the main motive
behind this. In this upcoming era of cloud-based software,
applications live on the cloud as services that can be accessed
with a web browser. The services consist of data,
computation and other resources that can be at anywhere in
the sphere. The services and applications require no
installation; this makes the deployment of applications on the
cloud server exceptionally simple and rapid. Ideally,
applications should also support user interaction and
collaboration, i.e., allow multiple clients devices to interact
and share the same data and application set over the Internet.
There is another technique currently occurring in the present
days: mobile devices are becoming an important application
platform and a gateway to the Web. While the Web has
conventionally been accessed from a personal computer, the
increasing network bandwidth, processor speeds, memory
capacity, and network service plans are rapidly making
mobile web usage and mobile software applications more
practical. These two transitions – the movement towards
cloud-based software and towards web-enabled mobile
devices – are transforming present era in many important
ways. We believe that in the long run the popularity of the
Cloud will make it the well used application platform in the
world. We also believe the growing popularity of mobile
devices – there are already about three billion mobile device

users today – will lead us to a common application platform
that can be used with different devices, including desktop
computers and mobile devices.
Nowadays, Software as a Service (SaaS) has been an
infrastructure for the cloud computing, in which software is
stored in the warehouses, applications, which are downloaded
on demand, run on a host system and the agents used by
customers become an input and display device only.
Therefore, on the host system, a virtual execution
environment should be provided, which could assist
applications to run simultaneously and keep the personalized
data during the execution period. An approach for the virtual
execution environment is the virtual machine technology, in
which each application runs in its own OS. However, this
approach could waste the hardware resources because of the
duplication of OS. Another light-weight approach is to
provide a solution of virtual execution environment for the
Windows or Linux-based applications using the application
virtualization technology.

2. VIRTUAL OS FOR UBIQUITOUS COMPUTING
In this section, we first describe about the requirements for a
ubiquitous computing system and then the utilization of
virtualized Operating Systems as such an infrastructure in
that system. In this section we also describe the resource
management to create stable computing environments for
ubiquitous computing, and configuration system to ease the
use of virtual Operating Systems.
2.1Requirements
Ubiquitous computing is an advanced computing concept
where computing is made to appear everywhere and
anywhere. The ubiquitous computing environment is utilized
to share multiple users the same environment. For example,
an environment constructed in a home is shared by the family
members, and one in an office space is shared by the office
employees. A same user of a ubiquitous computing
environment uses ubiquitous computing devices embedded in
it. Means the same environment is shared by many users and
also devices are also shared by them. These shared computing
devices are known as servers. Such an environment where
sharing servers can happen everywhere.
There are two major requirements to the infrastructure of
computing environment
a) Security
b) Stability

Vikram S. Vairagade et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1090-1094

www.ijcsit.com 1090

A)Security
A security environment should have the potential to prevent
virus attacks from intruding into the environment. There may
be a hidden software problem that creates a security hole.
Such a security hole may attack and allow an intrusion in the
environment, the requirement of secure infrastructure is that
it should contain the security breach in the infected
environment and it should not affect other environments. In
private ubiquitous computing environments, different levels
of security for different users should also be implementing so
that they have many different preferences and attitudes for
the security.
b)Stability
Stability is necessary to support application which is time
sensitive. Timing requirements are there in time sensitive
applications and there is a requirement of certain amounts of
CPU times in time frames to be allocated to them. The time
sensitive applications should not disturb execution of some
other stable non-time sensitive applications.
PDAs (Smartphone, tablet) should not share, but similar
requirements can be applied because they are also utilized in
such similar shared environments.
2.2 Operating Systems Virtualization
For the above requirements, we utilize virtual Operating
Systems with the CPU resource management functionality.
Virtual Operating Systems are the Operating Systems of
which multiple instances can run on one single computer
machine. Basically there are 2 models to realize virtual
Operating Systems, Virtual Machine Monitor that creates a
Virtual Machine in which an Operating Systems runs and
other is to access an OS personality server running on top of
host kernel, which will be a microkernel or a monolithic
kernel. These 2 models are different in only a way for the
underlying layers to provide abstractions of computing
resources from here we use the host kernel to describe the
underlying layers that provides the abstractions of computing
resources. Opposite of this to the host kernel, the Operating
Systems kernel in a virtual Operating Systems environment is
known as a guest kernel.
The Operating Systems virtualization of can isolate single
user’s execution environment from the others that share the
similar ubiquitous server since users can own and use their
personal installations of Operating Systems. The execution of
an untrusted application can be done in separate virtual
Operating Systems. Moreover, virtual Operating Systems can
append advanced security features by using virtual machine
based intrusion detection technologies. The other significance
of using virtual Operating Systems for personal ubiquitous
computing environments is that different virtual operating
Systems can run parallel on the same ubiquitous server. Such
a feature makes it possible to support legacy applications and
it protects the past investments and enables phased transitions
to new application platforms.
Fig. 1 shows the model realizes virtual operating systems on
top of host kernel. The fig. shows an example configuration
on ubiquitous server that is shared by User A and User B.

They use their own virtual operating systems. User A uses 2
virtual operating systems, VOS 1 and VOS 2. User B uses
one virtual operating system, VOS 3. There is another
virtualized OS, VOS 4, which is due for core system services.
Applications in VOS1 and VOS 3 can communicate with a
server in VOS 4 through internal connections provided by the
host kernel. Separate virtual operating systems; VOS 4 is
used to run the core system services in order to be isolated
from any faults and security breaches that can happen in
user’s virtual operating systems.

Users can also employ a separate virtualized OS to run an
untrusted application. For example, User A uses VOS 2 to
run an untrusted application. The host kernel provides CPU
resource management to guarantee and to limit the allocation
of CPU times to each virtualized OS. A virtualized OS that
runs time sensitive applications can always receive certain
CPU times needed for their stable execution. A virtualized
OS that runs untrusted applications can be configured to
receive limited CPU times, so that their effect to the other
virtualized Operating Systems can be restricted even if they
fall into an infinite loop.
More details of resource management are described in the
next section, and more application scenarios using virtualized
Operating Systems are presented in Section 3.
2.3 Resource Management
In order to have an execution environment completely
isolated from the others, the functionality of CPU resource
reservation is required to protect CPU resources allocated for
the environment. One computing environment created by a
virtualized OS is completely isolated if the execution of
programs in that environment is not affected by activities in
the other virtualized Operating Systems that share the same
computer system. It means that programs in that environment
can run as if its OS occupies a single computer system. Since
personalized ubiquitous computing environments require
guaranteed allocation of CPU times for their time sensitive
applications as described above, those CPU times have to be
allocated to their virtualized Operating Systems that host
those environments.
Thus, the CPU resource reservation mechanisms are needed
in the host kernel. Such reservations of CPU times also work
as CPU resource protection especially if actual utilization of
CPU times can be enforced to cap the maximum CPU time

Vikram S. Vairagade et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1090-1094

www.ijcsit.com 1091

allocation. The enforcement of CPU time utilization prevents
applications, and thus virtualized Operating Systems, from
overusing CPU times. It can limit the negative effects on
CPU resource allocation to the other virtualized Operating
Systems.
Figure 2 depicts the overview of the architecture and its
components. There are the resource management subsystems
in both the host and guest kernels.

The resource management mechanisms in the host and guest
kernel control the allocation of CPU times to virtualized
Operating Systems and the guest kernel’s user processes,
respectively. An appropriate CPU time reservation is made
for a virtualized OS in order to enable CPU time reservations
in the virtualized OS.
2.4. Configuration and Instantiation
In order to be able to use virtualized Operating Systems as
our ubiquitous computing infrastructure, we also need a
system that eases the instantiation and configuration of
virtualized Operating Systems. Our instantiation and
configuration system helps users to create new virtualized
Operating Systems and to configure them for specific uses.
For example, when a user would like to create a new
virtualized OS to run an untrusted application that accesses
Internet sites and sends back retrieved information, the
virtualized OS needs an Internet connection and an internal
connection to the originating virtualized OS.
The user can use the instantiation and configuration system to
automate the process of the creation and configuration of
such a virtualized OS and the execution of the specified
application in it.

3. APPLICATION SCENARIO
In this section we describe 2 application scenarios of using
virtualized Operating Systems on a server and a PDA.
A user can use multiple instances of virtualized Operating
Systems to configure environments to isolate untrusted
applications and to contain them in separate virtualized
Operating Systems. Such separate

Virtualized Operating Systems can be associated with limited
CPU resources by using our resource management
mechanisms, so that their overuse of CPU times does not
affect the other applications. Virtualized Operating Systems
that run untrusted applications are exposed to risks of being
intruded by viruses. Infected virtualized Operating Systems
can simply be removed without losing any important
information. In contrast to untrusted applications, trusted time
sensitive applications can consume reserved CPU times to
maintain the desired Operating Systems specified by their
users. Our resource management mechanisms guarantee the
allocation of reserved CPU times to those applications.

Figure 3 depicts our application scenario on a server. User A
uses three virtualized Operating Systems, VOS 1, 2, and 3.
User A runs untrusted applications, which were downloaded
from the Internet, in VOS 2 and 3. The allocation of CPU
times to VOS 2 and 3 is capped to limit their CPU resource
usage.
By using such a configuration, VOS 1 can be protected from
the untrusted applications in VOS 2 and 3. Even if they have
software bugs and fall into a busy infinite loop trying to use
CPU times as much as possible, our CPU resource
management mechanisms limit their CPU resource usage by
certain amounts. If they were viruses and intruded VOS 2 and
3, the intrusion does not affect VOS 1 and those
contaminated virtualized Operating Systems can be simply
abandoned. User B also uses the same server at the same
time. User B uses only one virtualized OS, VOS 4, in which
time sensitive applications, which control devices, are
running. Our software architecture enables those time
sensitive applications running in VOS4 to reserve CPU times
and to guarantee their timely execution. Any activities of
User A do not affect the execution of User B’s applications.
Therefore, User A and B can securely share the same server.
A PDA is a personal device that is not shared with other
users; thus, there is no need to consider its sharing.
Virtualized Operating Systems, however, can be used to
configure a PDA to internally realize protected domains by

Vikram S. Vairagade et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1090-1094

www.ijcsit.com 1092

running applications and core services in different virtualized
Operating Systems. A firewall running in a separate
virtualized OS can also be used to reinforce the security of
the PDA.

Figure 4 depicts our application scenario on a PDA. Core
services, such as a storage service and a window system, are
running in VOS 1. User applications are running in VOS 2.
Connections to the Internet are provided through the firewall
running in VOS 3. By employing the firewall and having it
run in the separate virtualized OS, VOS 1 and VOS 2 can be
protected from malicious attacks through Internet
connections. By running user applications in VOS 2, core
services running in VOS 1 can be isolated from software
faults due to bugs in user applications running in VOS 2.

4. RESULTS FROM THE CURRENT PROTOTYPE
We developed a prototype virtualized OS environment on
Linux/RK [8] and by adapting its resource management
mechanisms to UML (User-Mode Linux) [1].We call UML
with the resource management mechanisms UML/RK. This
section evaluates our current prototype and shows a
virtualized OS environment can isolate resource management
from each other.
First, we show the share of the CPU resource used by a whole
virtualized OS environment can be reserved and also limited
in order to create an isolated execution environment.
Figure 5 (a) shows the CPU times consumed by all processes
that creates a virtualized OS environment of UML/RK in
each period of CPU time replenishment. The virtualized OS
environment created by UML/RK consisted of the total of 10
processes that includes the kernel, its supporting programs,
and its user processes of UML/RK. The consumed times were
calculated from the CPU cycles actually executed within each
period. UML/RK was booted with the reservation parameter
of 20 millisecond CPU time within 50 millisecond period.
Figure 5 (a) shows the result of the execution of UML/RK in
which a program that executed an infinite busy loop was
running. We created 8 disturbing processes also being
executed on Linux/RK aside of UML/RK. The disturbing

processes executed an infinite busy loop trying to consume
CPU cycles as much as possible.
The results show that UML/RK received the reserved CPU
times even with disturbing processes running aside of it, and
the received CPU times were also limited as specified; thus,
the execution of UML/RK was correctly isolated. Next, we
show that CPU resource management is possible in a
virtualized OS environment. In order to evaluate that CPU
times can be effectively reserved and also be enforced by our

CPU resource management mechanisms in UML/RK, a
benchmark program ran with a reservation of the CPU
resource in a UML/RK virtualized OS environment.
Figure 5 (b) shows consumed CPU times calculated from the
CPU cycles actually executed within each period. UML/RK
was booted with the initial reservation parameter of 20
millisecond CPU time within 50 millisecond period. Figure 5
(b) shows the result of the execution started with the
reservation of 50 millisecond every 1 second. After 10
seconds, the reservation parameter was changed to 100
millisecond every 1 second. 10 seconds later, the reservation
parameter was changed again to 50 millisecond every1
second. It repeatedly changed the reservation parameter every
10 seconds. The results show that UML/RK can rigidly
enforce their CPU times and the CPU times obtained by
processes change promptly when the reservation parameters
are changed.

5. EXPECTED OUTCOME
The user can operate the various applications of different
operating system which are available on desktop of user
through any device (like smart phones or tablet) ubiquitously
using internet. If the user makes any changes to a particular
application then the system will synchronization that
application on host system.

6. CONCLUSION
This paper gives idea about ubiquitous computing
infrastructure architecture that is based on virtualized
Operating Systems to provide secure, stable, and isolated
computing environment. Our architecture enables ubiquitous
devices and ubiquitous servers to be shared securely.

Vikram S. Vairagade et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1090-1094

www.ijcsit.com 1093

The design presented for a ubiquitous desktop resolves key
issues inherent in managing multiple services per user.
Specifically they include
a. Providing multiple services to a user via a matching profile

service which centrally manages the relationship
between users and their services

b. Higher level authentication to support the access to
multiple services using single sign-on policies.

c. Simultaneous mobility of multiple services between thin
client devices.

d. Virtualization of services and centralized storage of
services to ensure that the virtual machine host
technology becomes a scalable commodity allowing
future expansion of the infrastructure.

REFERENCES:

[1] Hailei Sun, Tianyu Wo, “Virtual Execution Environment For Windows
Applications”, Proceedings of IEEE CCIS, 2011,
DOI:10.1109/CCIS.2011.6045094.

[2] Paul Doyle, Mark Deegan, Ciaran O’Driscoll, Michael Gleeson, Brian
Gillespie, “Ubiquitous Desktops with Multi-factor Authentication”,
IEEE, 978-1-4244-2917, 2008, DOI:10.1109/ICDIM.2008.4746797.

[3] Duy Le and Haining Wang, “An Effective Memory Optimization for
Virtual Machine-Based Systems”, IEEE Transactions On Parallel And
Distributed Systems, Vol. 22, No. 10, October 2011,
DOI:10.1109/TPDS.2011.37.

[4] Deka Ganesh Chandra and Dutta Borah Malaya, “A Study on Cloud
OS”, International Conference on Communication Systems and
Network Technologies, 2012, DOI:10.1109/CSNT.2012.154.

[5] Helmut Hoyer, Andreas Jochheim, ChristofRöhrig, and Andreas
Bischoff, “A Multiuser Virtual-Reality Environment for a Tele-
Operated Laboratory”, IEEE Transactions On Education, Vol. 47, No.
1, February 2004, DOI:10.1109/TE.2003.822263.

[6] Lawton, G., “Moving the OS to the Web”, Computer Journal, Vol. 41,
No. 3, p.16-19, 2008, DOI:10.1109/MC.2008.94.

[7] Bente,I. Hellmann, B. ; Rossow, T. ;Vieweg, J. ;von Helden, J., “On
Remote Attestation for Google Chrome OS”, 15th International
Conference on Network-Based Information Systems (NBiS), 2012 ,
DOI:10.1109/NBiS.2012.55.

[8] Carlos Oliveira, “Enabling Ubiquitous Workplace Through
Virtualization Technology” , ICAS 2013, The Ninth International
Conference on Autonomic and Autonomous Systems , IARIA, 2013,
ISBN:9781-61208-257-8

[9] •Ichiro Satoh, “Location-based services in ubiquitous computing
environments” , International Journal on Digital Libraries, Springer-
Verlag, June 2006, Volume 6, Issue 3, pp 280-291,
DOI:10.1007/s00799-006-0006-1

[10] Herman Slatman, “ Opening Up the Sky: A Comparison of
Performance-Enhancing Features in Sky Drive and Dropbox”, 18th
Twente Student Conference on IT, University of Twente, Faculty of
Electrical Engineering, Mathematics and Computer Science, Enschede,
The Netherlands, January 25, 2013.

[11] http://www.vmware.com/virtualization/

[12] • http://www.rcet.org/ubicomp/what.html

Vikram S. Vairagade et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1090-1094

www.ijcsit.com 1094

